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5. Rewiring in Graph Fairness 
▪ Algorithmic Fairness
▪ Structure: a New Dimension
▪ Cause of Graph Bias
▪ Taxonomy of Definitions
▪ Graph Rewiring Methods for Fairness
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1. Motivation 
▪ Graph Classification and Expressiveness
▪ Node Classification and Over-smoothing
▪ Desiderates

2. Graph Spectral Theory 
▪ Average Cut Problem
▪ Fiedler Vector
▪ Laplacian  and Dirichlet Energies
▪ Laplacian Eigenfunctions and Spectrum
▪ Spectral Theorem
▪ Spectral Commute times

3. Transductive Graph Rewiring
▪ Diffusive Rewiring
▪ Cheeger constant
▪ Curvature Rewiring

4. Inductive Graph Rewiring
▪ CT and Lovász Bound
▪ CT and Sparsification
▪ CT and Directional Graph Networks
▪ CT-Layer

▪ Loss function and CT-Layer
▪ Learned CTE and CT distance
▪ Experiments in Graph and Node Classification
▪ CT-Layer as Differentiable Curvature 
▪ CT and Cheeger Constant

▪ GAP Layer
▪ Network derivatives / Spectral Derivatives
▪ Approximation of fielder vector
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Motivation and Challenges

Introduction to Spectral Theory

Transductive Rewiring

Inductive Rewiring

Graph Fairness

Panel Discussion

Introduction to Spectral Theory

Transductive Graph Rewiring

Lovász Bound and CT

CT-Layer

https://colab.research.google.com/github/ellisalicante/GraphRewiring-Tutorial/blob/main/0-Spectral-Background.ipynb
https://colab.research.google.com/github/ellisalicante/GraphRewiring-Tutorial/blob/main/1-Transductive-Rewiring.ipynb
https://colab.research.google.com/github/ellisalicante/GraphRewiring-Tutorial/blob/main/2-Lovasz-Bound-and-CT.ipynb
https://colab.research.google.com/github/ellisalicante/GraphRewiring-Tutorial/blob/main/3-Inductive-Rewiring-CTLayer.ipynb
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Motivation

Graph Rewiring pursuits the optimal graph structure for the downstream task
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What is (or should be) graph rewiring?

In GRAPH CLASSIFICATION, graph rewiring skeletonizes the graph so that the structure becomes more 
informative 

▪ Given an input graph (left), bottleneck-preserving rewiring (center) discriminates graphs whose differences are 
in the bottlenecks themselves since intra-class edges are often removed or down-weighted.

▪ Gap-minimization rewiring (right) however, discriminates graphs whose differences are in the communities.

▪ Example: Web networks such as COLLAB are better discriminated by ‘bottleneck-preserving rewiring but SBM-
like networks with large bottlenecks are better discriminated by gap-minimization rewiring.



Motivation

Most GNNs are as powerful as 1-WL test
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Graph Classification and Isomorphism

Bronstein, M. GNNs through the lens of differential geometry and algebraic topology. Blog Post, 2021. [Link]
Li, P., et al. “Distance encoding: Design provably more powerful neural networks for graph representation learning”. In NeurIPS, 2020.
Lim, D., et al. "Sign and Basis Invariant Networks for Spectral Graph Representation Learning." arXiv preprint arXiv:2202.13013, 2022.
Velingker, A., et al. "Affinity-Aware Graph Networks." arXiv preprint arXiv:2206.11941, 2022.

Use Spectral metrics to perform 
Graph Rewiring

Distance Encodings (DE) or Positional Encodings (PE) make GNNs more powerful than 1-WL

▪ PE: Random walk measures (e.g. shortest path, diameter, commute times), Spectral metrics (e.g. eigenvectors)

▪ Expressiveness: DE or PE provides strictly more expressive power than 1-WL test
[Li, P. et al. 2020] [Velingker, A. et al. 2022] 

▪ Invariance: Spectral GCN are permutation and sign equivariant [Lim, D. et al. 2022]

▪ Usage: Usually used as an extra node feature or to control message aggregation

https://blog.twitter.com/engineering/en_us/topics/insights/2021/graph-neural-networks-through-the-lens-of-differential-geometry-


Motivation

Graph Rewiring pursuits the optimal graph structure for the downstream task
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What is (or should be) graph rewiring?

In NODE CLASSIFICATION, graph rewiring enables/disables information flow between nodes.

▪ Homophilic networks (where structure is correlated with class labels) are easy to rewire (e.g. reduce the gap).  

▪ Heterophilic networks often require to increase the flow between heterophilic nodes. 

▪ In the figure above (Cornell): distant green nodes can access the periphery of the hub while the gap is preserved. 

▪ Result: classes with high heterophilic index are better classified



Motivation

GNNs were originally designed based on the smoothness principle 
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Node Classification. Heterophily and Over-squashing.

ℎ𝒆𝒅𝒈𝒆𝒔 =
|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢 = 𝑦𝑣}|

|𝐸|

H𝑖𝑗(𝐸) =
|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢𝑖 ∧ 𝑦𝑣 = 𝑗}|

|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢 = 𝑖}|

ℎ𝒏𝒐𝒅𝒆𝒔 =
1

𝑉


𝑣∈𝑉

|{𝑢 ∈ 𝑁 𝑣 : 𝑦𝑢 = 𝑦𝑣}|

|𝑁 𝑣 |

Newman, M. “Assortative mixing in networks”. Phys. Rev. Lett., 89, 2002.
Pei, H. et al. “Geom-GCN: Geometric GCNs”. In ICLR, 2019.
Zhu, J., et al. “Beyond homophily in graph neural networks: Current limitations and effective designs”. in NeurIPS, 2020
Lim, D., et al. "New benchmarks for learning on non-homophilous graphs“. In WWW Workshop on GLB, 2021.

Homophily

[Zhu, J., et al., 2020] [Pei, H. et al., 2019] 

ℎ𝒔𝒎𝒐𝒐𝒕𝒉= ℰ 𝒚 = 𝑇𝑟[𝒚𝑻𝐋𝒚]

[Lim, D. et al., 2021] 

ℎ = r = Pearson correlation coefficient

between the degrees of linked nodes

ℎ𝒄𝒍𝒂𝒔𝒔 =
1

|𝐶| − 1


𝑐∈C

ℎ𝑐 −
𝐶𝑐
𝑛

+

, ℎ𝑐 =
σ𝑣∈𝑐 |{𝑢 ∈ 𝑁 𝑣 : 𝑦𝑢 = 𝑦𝑣}|

σ𝑣∈𝑐 |𝑁 𝑣 |

i.e. Correlation between structure and labels

Dirichlet energies Assortativity

[Newman, M., 2002] 

Short-range tasks



Motivation

→ Problem with higher radius
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Node Classification. Heterophily and Over-squashing.

Alon, U. and Yahav, E. “On the bottleneck of graph neural networks and its practical implications”. In ICLR 2021

r = radius
k = n layers
d = graph diameter 

Under-reaching Over-smoothing Over-squashing↑k

Heterophily

Graph Rewiring as a 
solution
▪ Connect distant nodes to 

overcome the three 
problems.

▪ E.g. increase bottleneck

Long-range tasks

k > r ≈ dk < r node’s receptive field increases exponentially



Parameter-Free

Motivation
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Key Challenges – Desiderates of Graph Rewiring

Deac, A., Lackenby, M. and Veličković, P. “Expander Graph Propagation”. In Learning on Graphs Conference (LoG), 2022.

Principled

No dedicated 
preprocessing

Low Complexity

Remove bottlenecks

Global Propagation

Interpretable

Expressive

Task-aligned

[Deac, A. et al., 2019] 

Preserve the original 
structure



Introduction to Spectral Theory
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𝚲 𝚽𝑇
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Graphs as Combinatorial Objects

• Undirected Graph

• Adjacency Matrix:

• Function over the nodes:

• Example: 

Understanding the Graph Laplacian 

𝐀 =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

1

2

3 4

𝐺 = (𝑉, 𝐸), 𝑉 = {1,2, … , 𝑛}𝑒𝑖𝑗 ∈ 𝐸 ⊆ 𝑉 × 𝑉

𝑓: 𝑉 → ℝ

1

2

3 4

𝑓: 𝑉 → {−1,1}

1

2

3 4

…

𝐴𝑖𝑗

𝑎𝑖𝑗 , 𝑤𝑖𝑗

As a variable

As a weight

𝑒12

𝐺 as a Combinatorial Object: 2𝑛 functions 𝑓



The Average Cut Problem
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Understanding the Graph Laplacian

• What 𝑓s are more informative about 𝐺?

1

3 4

2 5

6

𝑓(𝑖) = 𝑓(𝑗)∀𝑒𝑖𝑗

𝑓(𝑖) =
1

|𝒩𝑖|
σ
𝑗
𝑎𝑖𝑗𝑓(𝑖) =

1

𝑑𝑖
σ
𝑗
𝑎𝑖𝑗𝑓(𝑖)

1

3 4

2 5

6

𝑓 𝑖 = 𝑓 𝑗 ∀𝑒𝑖𝑗

𝑓 = min
𝑓∈Ω

𝐴𝑐𝑢𝑡(𝐴, 𝐵)

BUT for 𝑖 ∈ 𝐶𝐴, 𝑗 ∈ 𝐶𝐵

𝐴𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴, 𝐵)

|𝐴|
+
𝑐𝑢𝑡(𝐴, 𝐵)

|𝐵|

𝐴 ∪ 𝐵 = 𝑉
𝐴 ∩ 𝐵 = ∅

𝑐𝑢𝑡(𝐴, 𝐵) = σ
𝑖∈𝐴,𝑗∈𝐵

𝑎𝑖𝑗

Harmonic Piecewise Harmonic

Vertex Partition

Cut

NP-Hard!



The Fiedler Vector
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Understanding the Graph Laplacian

Fiedler’s Theorem: Measures the variability of the optimal solution

𝜆2 = 𝑛 ⋅ 𝑚𝑖𝑛
σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

σ𝑖=1
𝑛 σ𝑗=1

𝑛 (𝑥𝑖 − 𝑥𝑗)
2

: 𝐱 ≠ 𝑐 ⋅ 𝟏, 𝑐 ∈ ℝ .

𝐱 ∈ {−1,1}𝑛

Minimal variability is 𝜆1 = 0, i.e. that of the harmonic function𝐱 ⊥ 𝟏

The variability 𝜆2 of the optimal partition minimizes the ratio between the variability imposed
by the structure of the graph and the unconstrained one!

𝑥𝑖 = +1 → 𝑖 ∈ 𝐴, 𝑥𝑖 = −1 → 𝑖 ∈ 𝐵



The Fiedler Vector
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Understanding the Graph Laplacian



The Combinatorial Laplacian
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Understanding the Graph Laplacian

The combinatorial Laplacian
𝐋 = 𝐃 − 𝐀,𝐃 = 𝑑𝑖𝑎𝑔 𝑑1, … , 𝑑𝑛

Semidefinite Positive
𝑻𝒓 𝐟𝑇𝐋𝐟 ≥ 0, ∀𝐟 ∈ ℝn

The trace of 𝐋 is ∝ to the variability imposed by the 
structure of the graph (Fiedler’s Thm)

𝑇𝑟 𝐟𝑇𝐋𝐟 =
1

2


𝑖=1

𝑛



𝑗=1

𝑛

𝑎𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2
=
1

2


𝑖~𝑗

𝑛

𝑓𝑖 − 𝑓𝑗
2

Harmonicity

𝑳𝒇 = 𝐟 − 𝐃−𝟏𝐀𝐟 → 𝑓 𝑖 =
1

𝑑𝑖


𝑗

𝑎𝑖𝑗𝑓(𝑖)

Dirichlet Energies!



Eigenfunctions and Spectrum

20/n

Understanding the Graph Laplacian

The spectrum and eigenfunctions of 𝐋

𝐋𝐟1 = 0 → 𝜆1 = 0

𝜆𝑖 = 𝑚𝑎𝑥
𝒳𝑖

𝑚𝑖𝑛
𝐱⊥𝒳𝑖,𝐱≠𝟎

𝑅(𝐱)
𝑅(𝐱) =

𝐱𝑇𝐋𝐱

𝐱𝑇𝐱
∈ ℝ

Courant-Fisher Theorem: Rayliegh Quotient: 

𝐱𝑇𝐱 = σ
𝑖=1

𝑛

σ
𝑗=1

𝑛

(𝑥𝑖 − 𝑥𝑗)
2

Unconstrained Variability: 

𝐋𝐟2 = 𝜆2𝐟2 𝜆2 = 𝑛 ⋅ 𝑚𝑖𝑛
σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

σ𝑖=1
𝑛 σ𝑗=1

𝑛 (𝑥𝑖 − 𝑥𝑗)
2

: 𝐱 ≠ 𝑐 ⋅ 𝟏, 𝑐 ∈ ℝFiedler vector

𝐋𝐟𝑛 = 𝜆𝑛𝐟𝑛
⋮

𝜆1 < 𝜆2 ≤ ⋯ ≤ 𝜆𝑛
For connected graphs

𝑓2 ⊥ 𝐟1, 𝑓3 ⊥ {𝐟1, 𝐟2}, … → 𝜆𝑖 =
𝐟𝑖
𝑇𝐋𝐟𝑖

𝐟𝑖
𝑇𝐟𝑖



Eigenfunctions of the Laplacian
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Understanding the Graph Laplacian



Spectral Theorem and Heat Kernels
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Understanding the Graph Laplacian

Diffusion through Heat Kernels Spectral Decomposition on L

Matricial Exponential: Solution found by exponentiating Laplacian eigensystem

Solution of heat equation and measures 
information flow across edges of graph with time: t

t Lh
t

h
−=





𝐋 = 𝚽𝚲𝚽𝑇 , 𝚽 = [𝐟1, 𝐟2, … , 𝐟n], 𝚲 = 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, … , 𝜆𝑛 → 𝐋 = σ𝑖=1
𝑛 𝜆𝑖 𝐟i𝐟i

𝑇



Spectral Theorem and Heat Kernels
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Understanding the Graph Laplacian

▪ At time 𝑡 = 0, each node has a unit of heat.
▪ The heat diffuses as 𝑡 → ∞ driven by 𝐋 (actually by its

harmonization behavior).
▪ The Heat Kernel Signature (HKS) of a node is its heat

trace over time.
▪ Heat 𝐻𝑡(𝑖, 𝑗) is the probability that a lazy random walk

starting at node 𝑖 hits node 𝑗 at time 𝑡.

Motivation

𝑡 ≈ 0

𝑡 → ∞

Diffusion through Heat Kernels



Commute Times
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Understanding the Graph Laplacian

Commute Time and its Embedding

𝐶𝑇(𝑖, 𝑗) = 𝐻(𝑖, 𝑗) + 𝐻(𝑗, 𝑖) Time needed by a random walk to hit 𝑗 (Hitting time)
and return. More respectful with 𝐺’s structure than SP !

Motivation

𝑅(𝑖, 𝑗) =
𝐶𝑇(𝑖, 𝑗)

𝑣𝑜𝑙(𝐺)

𝐶𝑇(𝑢, 𝑣) = 𝑣𝑜𝑙(𝐺) σ
𝑖=2

𝑛 1

𝜆𝑖
(𝐟𝑖(𝑢) − 𝐟𝑖(𝑣))

2 Sum of divergences between eigenfunctions pinpointed
at 𝑢 and v but downweighed by the eigenvalue

Smoothest eigenfunctions contribute less (btw their 𝝀𝒊 is smaller) whereas the 
contribution of high variance eigenfunctions is reduced by their large inverse 𝝀𝒊



Commute Times
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Understanding the Graph Laplacian

Commute Time and its Embedding

𝐶𝑇(𝑢, 𝑣) = 𝑣𝑜𝑙(𝐺) σ
𝑖=2

𝑛 1

𝜆𝑖
(𝐟𝑖(𝑢) − 𝐟𝑖(𝑣))

2

𝐶𝑇(𝑢, 𝑣) = 𝑣𝑜𝑙(𝐺) σ
𝑖=2

𝑛 1

𝜆𝑖
′

𝐠𝑖(𝑢)

𝑑𝑢
−
𝐠𝑖(𝑣)

𝑑𝑣

2

→

Θ = 𝑣𝑜𝑙(𝐺)Λ−1/2Φ𝑇

Θ = 𝑣𝑜𝑙(𝐺)Λ′−1/2Φ′𝑇𝐃 Τ1 2

→

CT matrix: CT Embedding:

CTEmbedding in the cols of Θ



Commute Times
Understanding the Graph Laplacian

Commute Time and its Embedding

Θ∗ = 𝑚𝑖𝑛
Θ∈ℝ𝑛×𝑑:ΘΘ𝑇=𝐈

𝑇𝑟[Θ𝑇ℒΘ] → 𝑚𝑖𝑛𝐿 = 𝑇𝑟[Θ𝑇ℒΘ] + 𝜆𝑟𝑒𝑔 ∥ ΘΘ
𝑇 − 𝐈 ∥2

𝜕𝐿

𝜕Θ
= 2ℒΘ + 4𝜆𝑟𝑒𝑔Θ(ΘΘ

𝑇 − 𝐈)
Distance matrix:



Transductive Graph Rewiring
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Diffusive Rewiring
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Motivation and basic equations

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In Advances in Neural Information
Processing Systems, 2019. URL https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf. 3, 8, 23

Diffusion processes provide principled methods for linking distant nodes [Klicpera et al. 2019] 

▪ Improving Message Passing: Spatial MPNNs need deep layers to leverage high-order (distant) neighborhoods. 

▪ Structural Noise: Edges in real graphs are often noisy or not correlated with the distribution of nodal features. 

▪ Spectral principles: Spectral GNNs allow high-order neighborhoods but are not inductive for unseen graphs

▪ GDC/DIGL: Diffuse (PageRank/RW with restart, Heat Kernels) + sparsify + threshold as an alternative message passing.

PPR: 𝑆 = 𝛼 𝐼𝑛 + 𝛼 − 1 𝐴 −1

Alpha
Top-K or epsilon for thresholding edges

Heat: 𝑆 = e𝑡 𝐴 − 𝐼𝑛

t
Top-K or epsilon for thresholding edges

Parameterized

𝑺 = 

𝑘=0

∞

𝜃𝑘 𝑻
𝑘

σ𝑘=0
∞ 𝑻𝑘=(𝑰 − 𝑻)−1

𝜃𝑘 = 𝛼(1 − 𝛼)𝑘

𝑺 = 𝛼

𝑘=0

∞

( 1 − 𝛼 𝑻)𝑘

𝑺 = 𝛼(𝑰 − (1 − 𝛼)𝑻)−1

Powers to the transition matrix

Row-stochastic matrix

https://proceedings.neurips.cc/paper/%202019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf


Diffusive Rewiring
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Analysis

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In Advances in Neural Information
Processing Systems, 2019. URL https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf. 3, 8, 23

Diffusion works as a low—pass filter of structural noise [Klicpera et al. 2019] 

▪ Trivial choice of T (random walker): 𝑻 ≡ 𝑻𝑟𝑤 = 𝑫−1𝑨

▪ Interpretation of: 𝑻𝒌(i,j) probability of hitting j from i in k-steps. Hop aggregation: 𝜽1𝑻 + 𝜽2 𝑻
2 + 𝜽3𝑻

3+ ⋯

▪ 𝒌 → ∞ : Hitting probability is proportional to degree. But more distant modes can be reached -> Structural 
Smoothing 

𝑻 ≡ 𝑻𝑠𝑦𝑚 = (𝑰 + 𝑫)−1/2(𝑰 + 𝑨)(𝑰 + 𝑫)−1/2

Basic SBM Structural Noise (white pixels) Structural smoothing

Self
Loops

𝑺 = 𝛼(𝑰 − (1 − 𝛼)𝑻)−1

https://proceedings.neurips.cc/paper/%202019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf


Diffusive Rewiring
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Analysis

Huda Nassar, Kyle Kloster, and David F. Gleich. Strong Localization in Personalized PageRank Vectors. In International Workshop on
Algorithms and Models for the Web Graph (WAW), 2015.
GITHUB: https://github.com/gasteigerjo/gdc and also recently incorporated to Pytorch Geometric. 

Sparsification and thresholding after diffusion [Nassar et al. 2015] 

▪ Sparsification and thresholding: ෩𝑺 = 𝑺 ∗ (𝑆 ≥ 𝜀)

▪ Why ෩𝑺? Limit distribution of 𝑺 is somewhat sparse (some nodes maybe not visited). This is “localization”. 

▪ Sparsification is enabled by localization! Perturbation mostly affects to highest and lowest eigenvalues.

𝑺 𝒊, 𝒋 , (𝑖 ∈ 𝑽𝒂, j ∈ 𝑽𝒃) vs 𝑺 𝒊, 𝒋 , (𝑖 ∈ 𝑽𝒂, j ∈ 𝑽𝒂) 

Edge magnitude 
distribution

After sparsification

Cut = 0

T_S_th = T_S_zeroD>0.008𝑇𝑠𝑦𝑚
ሚ𝑆 ≡ 𝐷ሚ𝑆

−1/2෩𝑺 𝑫෩𝑺

−𝟏/𝟐

Final thresholding

https://github.com/gasteigerjo/gdc


Curvature

The Cheeger Constant is a separator problem
▪ Given a graph G, remove as few edges as possible to disconnect the graph into two parts of

almost equal size

▪ Solving this problem implies exploring the 2|𝑉| subsets  𝑆 ⊆ 𝑉 of the graph. 
▪ Each one induces a partition 𝑆 ∪ ҧ𝑆 = V, 𝑆 ∩ ҧ𝑆 = ∅

However, this quantity can be spectrally bounded (and it bounds the spectra)
𝜆2

2
≤ ℎ𝐺 < 2𝜆2 and 2ℎ𝐺 ≤ 𝜆2<

ℎ𝐺
2

2

𝜆2 is the first non-trivial eigenvalue of the normalized Laplacian of G
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The Cheeger Constant

Fan RK Chung. Spectral Graph Theory. American Mathematical Society, 1997. URL https://mathweb.ucsd.edu/~fan/research/revised.html

𝒉𝑮 = min
𝑆⊆𝑉

ℎ𝑆 , ℎ𝑆 =
𝑐𝑢𝑡(𝑆, ҧ𝑆)

min( vol 𝑆 , vol( ҧ𝑆))

# edges in the bottleneck

Volume of the community

Minimal edge density in the partition

Number of edges in the 
bottleneck𝑐𝑢𝑡 𝑆, ҧ𝑆 = |{ 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ ҧ𝑆}|

https://mathweb.ucsd.edu/~fan/research/revised.html


Curvature

Since graphs encode manifolds, curvature (positive, negative or zero) quantifies the 
dispersion of geodesics (e.g. shortest paths) : [Devrient and Lambiotte. 2022] 

• Zero: geodesics remain parallel (e.g. grid)

• Positive: geodesics converge (e.g. clique)

• Negative: geodesics diverge (e.g. trees)

Edge curvature : [Topping el al., 2022] 

• #⊿ 𝑖, 𝑗 : Triangles based at (i,j)

• #∎
𝑖 𝑖, 𝑗 : Neighbors of i forming a 4-cycle based on (i,j) without diagonals inside. 

• 𝛾𝑚𝑎𝑥 𝑖, 𝑗 : Maximal number of 4-cycles based at (i.j) traversing a common node 
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The Cheeger Constant

Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance. arXiv preprint arXiv:2201.06385, 2022. doi: 
10.48550/ARXIV.2201.06385. URL https://arxiv.org/abs/2201. 06385. 2, 6, 7, 18

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. Understanding over-squashing
and bottlenecks on graphs via curvature. In International Conference on Learning Representations, 2022. URL 
https://openreview.net/forum?id=7UmjRGzp-A. 2, 3, 6, 8, 18, 23

https://arxiv.org/abs/2201.%2006385.%202
https://openreview.net/forum?id=7UmjRGzp-A


Curvature

Balanced forman curvature 

𝑅𝑖𝑐 𝑖, 𝑗 = 0 if min{𝑑𝑖 , 𝑑𝑗} = 1

𝑅𝑖𝑐 𝑖, 𝑗 =
2

𝑑𝑖
+ 2
𝑑𝑗

-2 + 2 |#⊿ 𝑖,𝑗 |

max{𝑑𝑖,𝑑𝑗}
+ |#⊿ 𝑖,𝑗 |

m𝑖𝑛{𝑑𝑖,𝑑𝑗}
+ (𝛾max)

−1

max{𝑑𝑖,𝑑𝑗}
(|#∎𝑖 | + |#∎

𝑗 | )
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Intuition 

#⊿ 0,1 =1 given by triangle {1, 6, 0}
#∎
0 (0,1) = {2, 3} without 4,6 because triangle {1,6,0}

#∎
1 (0,1) = {5} without 4,6 because triangle {1,6,0}  

𝛾𝑚𝑎𝑥(0,1) = 2 from the two 4-cycles passing through node 5.

𝑅𝑖𝑐 0,1 =
2

5
+ 2
3

-2 + 21
5

+ 1
3

+ (2)
−1

5
(2 + 1) = 6+10

15
-2 + 6+5

15
+ 5
10

= -2 + 22
15

+ 3
10

= -2 + 44+9
30

> = -2 + 51
30

= -0.23<0

𝑑0=5, 𝑑1=3 

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature

Balanced forman curvature 

𝑅𝑖𝑐 𝑖, 𝑗 = 0 if min{𝑑𝑖 , 𝑑𝑗} = 1

𝑅𝑖𝑐 𝑖, 𝑗 =
2

𝑑𝑖
+ 2
𝑑𝑗

-2 + 2 |#⊿ 𝑖,𝑗 |

max{𝑑𝑖,𝑑𝑗}
+ |#⊿ 𝑖,𝑗 |

m𝑖𝑛{𝑑𝑖,𝑑𝑗}
+ (𝛾max)

−1

max{𝑑𝑖,𝑑𝑗}
(|#∎𝑖 | + |#∎

𝑗 | )
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Intuition 

#⊿ 0,1 =1 given by triangle {1, 6, 0}
#∎
0 (0,1) = {2} without 3 and without 4,6 because triangle {1,6,0}

#∎
1 (0,1) = ∅ without 5 and without 4,6 because triangle {1,6,0}  

𝛾𝑚𝑎𝑥(0,1) = 1 from the 4-cycle passing through node 5.

𝑅𝑖𝑐 0,1 =
2

5
+ 2
2

-2 + 21
5

+ 1
2

+ (1)
−1

5
(1 + 0) = 4+10

10
-2 + 4+5

10
+ 1
5

= -2 + 23
10

+ 1
5

= -2 + 25
10

= 2.5>0

𝑑0=5, 𝑑1=2 

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature

Balanced forman curvature 

𝑅𝑖𝑐 𝑖, 𝑗 = 0 if min{𝑑𝑖 , 𝑑𝑗} = 1

𝑅𝑖𝑐 𝑖, 𝑗 =
2

𝑑𝑖
+ 2
𝑑𝑗

-2 + 2 |#⊿ 𝑖,𝑗 |

max{𝑑𝑖,𝑑𝑗}
+ |#⊿ 𝑖,𝑗 |

m𝑖𝑛{𝑑𝑖,𝑑𝑗}
+ (𝛾max)

−1

max{𝑑𝑖,𝑑𝑗}
(|#∎𝑖 | + |#∎

𝑗 | )
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Intuition 

#⊿ 0,1 =0 no triangle based at (0,1)
#∎
0 (0,1) = ∅ no 4-cycle based at (0,1)

#∎
1 (0,1) = ∅ no 4-cycle based at (0,1)

𝛾𝑚𝑎𝑥(0,1) = 0 no 4-cycle

𝑅𝑖𝑐 0,1 =
2

4
+ 2
3

-2 + 20
4

+ 0
3

+ (0)
−1

4
(0 + 0) = 6+8

12
-2 +0+ 0 = -2 + 14

12
= -2 + 14

12
= -0.83<0

𝑑0=4, 𝑑1=3 

Strong 
bottleneck

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature

Balanced forman curvature 
• Edges with very negative curvature (>-2) create bottlenecks and thus over-squashing
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Intuition 

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature

Balanced forman curvature 
• Enlarging the bottlenecks reduces over-squashing
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Intuition 

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature
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The SRDF ALGORITHM 

Stochastic Discrete Ricci Flow (SDRF) 

SURGICAL REWIRING: 
Minimal Ricci curvature: Best candidate edge to improve.
Sample neighboring edges with probability propto improvement
Remove Edge with maximal Ricci curvature

𝑅𝑖𝑐 𝑖, 𝑗 > 𝑘 > 0 ∀ 𝑖, 𝑗 ⇒
𝜆2

2
≥ ℎ𝐺 ≥

𝑘

2

Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://openreview.net/forum?id=7UmjRGzp-A


Curvature vs Diffusive Rewiring
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Analysis

Diffusion improves graph learning. In Advances in Neural Information Processing Systems, 2019.
https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

Diffusion works as a low—pass filter of structural noise [Klicpera et al. 2019] 

SDRF is quirurgical on behalf of a structural test for each edge [Topping el al., 2022] 

▪ The Cheeger constant of SGD/DIGL is controlled by that of SDRF:  𝒉𝑺,𝜶 ≤
(𝟏−𝜶)

𝜶

𝒅𝒂𝒗𝒈(𝑺)

𝒅𝒎𝒊𝒏(𝑺)
𝒉𝑺

▪ SDRF preserves more the structure than SGD/DIGL (which may remove the cut)

After SDRF Removes intra & Adds inter Degree Distributions 

𝜆2,𝑆𝐷𝑅𝐹 = 0.0297 

𝜆2,𝐺 = 0.0272

https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://openreview.net/forum?id=7UmjRGzp-A


Curvature vs Diffusive Rewiring
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Analysis

Diffusion works better in homophilic graphs [Klicpera et al. 2019] Needs parameters 𝛼 (or t) and 𝜖

SDRF works better in heterophilic graphs [Topping el al., 2022] Needs parameters 𝜏 and 𝐶+

Diffusion improves graph learning. In Advances in Neural Information Processing Systems, 2019.
https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
Jake Topping, et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022. URL.

https://proceedings.neurips.cc/paper/ 2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://openreview.net/forum?id=7UmjRGzp-A


Inductive Graph Rewiring

42
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Motivation and Challenges

Introduction to Spectral Theory

Transductive Rewiring

Inductive Rewiring

Graph Fairness

Panel Discussion



The Lovász Bound
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Motivation and basic equations

László Lovász. Random walks on graphs. Combinatorics, Paul Erdös is eighty, 2(1-46):4, 1993. URL https://web.cs.elte.hu/~lovasz/erdos.pdf. 2, 4

Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute times in large random neighborhood graphs. Journal of Machine 
Learning Research, 15(52):1751–1798, 2014. URL http://jmlr.org/papers/v15/vonluxburg14a.html. 4, 20

The Lovász bound explains the expressiveness of commute times [Lovász, 1993] 

𝑪𝑻 𝒖, 𝒗

𝒗𝒐𝒍 𝑮
−

𝟏

𝒅𝒖
+

𝟏

𝒅𝒗
≤

𝟏

𝛌𝟐

𝟐

𝒅𝒎𝒊𝒏

▪ Deviation from Local resistance: The global effective resistance should be far from its local estimation to be 
informative.

▪ Inverse of the bottleneck: High spectral gaps induce uninformative effective resistances. (Link to Cirvature)

▪ High probability of getting lost in (some) large graphs [von Luxburg et al., 2014] 

Some facts: 

Effective Resistance Local resistance

▪ Effective resistances are also given by the Laplacian’s pseudoinverse or Green’s function
𝑹 𝒖, 𝒗 = 𝒆𝒖 − 𝒆𝒗

𝑻𝑳+ 𝒆𝒖 − 𝒆𝒗 , 𝑳+=σ𝒊>𝟐
𝒏 𝝀𝒊

−𝟏 𝒇𝒊𝒇𝒊
𝑻

▪ Effective resistances are upper bounded by shortest paths
(and they are by far more informative about the role of the Edge (u,v)  in the graph since all paths are considered)

https://web.cs.elte.hu/~lovasz/erdos.pdf.
http://jmlr.org/papers/v15/vonluxburg14a.html


The Lovász Bound

Consider two SBMs with small and large gap respectively: 
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Impact of the bound

László Lovász. Random walks on graphs. Combinatorics, Paul Erdös is eighty, 2(1-46):4, 1993. URL https://web.cs.elte.hu/~lovasz/erdos.pdf. 2, 4

Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute times in large random neighborhood graphs. Journal of Machine 
Learning Research, 15(52):1751–1798, 2014. URL http://jmlr.org/papers/v15/vonluxburg14a.html. 4, 20

Map the Fiedler vector as node attributes!

https://web.cs.elte.hu/~lovasz/erdos.pdf.
http://jmlr.org/papers/v15/vonluxburg14a.html


The Lovász Bound

The spectral gap (i.e. the Dirichlet energy of the Fiedler vector) controls the variance of 
𝒇𝟐 and consequently the scatter in the latent space:  
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Impact of the bound

Huaijun Qiu and Edwin R. Hancock. Clustering and embedding using commute times. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 29(11):1873–1890, 2007. doi: 10.1109/TPAMI.2007.1103. URL https://ieeexplore.ieee.org/document/4302755. 6

Latent spaces: Nodes and KDEs

https://ieeexplore.ieee.org/document/4302755


The Lovász Bound

Effective resistances (when informative) R(u,v) reveal the impact of each Edge (u,v) in 
the topology of the Graph. Therefore, sampling edges with a probability proportional to
the effective resistance results in a sparse versión of the graph. [Spielman and Srivastava, 
2011] 

𝑶
𝒏𝒍𝒐𝒈𝒏

𝜺
samples suffice to satisfy  
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Sparsification

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011. 
doi: 10.1137/080734029. URL https://doi.org/10.1137/080734029. 5

∀𝐱 ∈ ℝn: 1 − 𝜖 𝐱T𝐋𝐺𝐱 ≤ 𝐱T𝐋𝐺′𝐱 ≤ (1 + 𝜖)𝐱T𝐋𝐺𝐱

Sparsified graphs

KDE of probabilities

https://doi.org/10.1137/080734029


The Lovász Bound

Commute Times embeddings rely on down-scaled versions of the eigenvectors 𝑭 and 
the scale factor is the corresponding eigenvalue.  

CT Embedding →𝑪𝑻𝒖𝒗 = 𝐳𝒖 − 𝐳𝒗 𝟐

𝟐
comes from 𝒁 = 𝒗𝒐𝒍(𝑮)𝚲−𝟏/𝟐𝑭𝑻

𝐳𝒖= 𝒗𝒐𝒍(𝑮) 𝟎
𝐟2 𝑢

𝝀𝟐

𝐟3 𝑢

𝝀𝟑
…

𝐟𝑛 𝑢

𝝀𝒏

𝑻

and consequently 𝒁𝑇 gets the scaled non-trivial 

eigenvectors
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Link with Directional Graph Networks

Huaijun Qiu and Edwin R. Hancock. Clustering and embedding using commute times. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 29(11):1873–1890, 2007. doi: 10.1109/TPAMI.2007.1103. URL https://ieeexplore.ieee.org/document/4302755. 6

𝒁𝑇
KDE of 𝒁𝑇 − 𝑭𝒁𝑇 − 𝑭

https://ieeexplore.ieee.org/document/4302755


The Lovász Bound
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Link with Directional Graph Networks

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro Liò. Directional graph networks. In International Conference on
Machine Learning (ICML), pages 748–758. PMLR, 2021. http://proceedings.mlr.press/v139/beaini21a/beaini21a.pdf

http://proceedings.mlr.press/v139/beaini21a/beaini21a.pdf


𝑪𝑻𝒖𝒗 ∝ 𝑹𝒖𝒗 = 𝑯𝒖𝒗 +𝑯𝒗𝒖
→ Expected time to from 𝑢 to 𝑣 and come back to 𝑢

CT Embedding →𝑪𝑻𝒖𝒗 = 𝐳𝒖 − 𝐳𝒗 𝟐

𝟐

→ Node embedding which pairwise Euclidean distance is 𝐶𝑇uv

Direct relationship with 
▪ Eigenvectors

▪ Dirichlet Energies

▪ Expanders and Sparsifiers

▪ Cheeger Constant

▪ Curvature

CT-Layer
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Why commute times for rewiring? Quick Recap!

𝐙 = 𝑣𝑜𝑙(𝐺)𝚲−1/2𝐅𝑇 given 𝐋 = 𝐅𝚲𝐅𝑇

𝐶𝑇𝑢𝑣 =

𝑖=2

𝑛
1

𝜆𝑖
𝐟𝑖 𝑢 − 𝐟𝑖 𝑣

2

𝐶𝑇𝑢𝑣 = 𝐳𝑢 − 𝐳𝑣 2
2

𝐙 = arg min
𝑠.𝑡. 𝐙𝑇𝐙=𝕀

𝑇𝑟[𝐙𝑇𝐋𝐺𝐙]

𝑇𝑟[𝐙𝑇𝐃𝐺𝐙]

𝓔𝑮 𝐱 = 𝐱𝑇𝐋𝐺𝐱 =
𝑢,𝑣 ∈𝐸

xu − xv
2 = 𝑇𝑟[𝐗𝐓𝐋𝐺𝐗]

∀𝐱 ∈ ℝn: 1 − 𝜖 𝐱T𝐋𝐺𝐱 ≤ 𝐱T𝐋𝐺′𝐱 ≤ (1 + 𝜖)𝐱T𝐋𝐺𝐱

𝑅𝑢𝑣 =
𝐶𝑇𝑢𝑣
𝑣𝑜𝑙 𝐺

=

𝑖=2

𝑛
1

𝝀𝒊
𝐟𝑖 𝑢 − 𝐟𝑖 𝑣

2

𝒉𝑮 = min
𝑆⊆𝑉

ℎ𝑆 , ℎ𝑆 =
|{ 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ ҧ𝑆}|

min(vol 𝑆 , vol( ҧ𝑆))

𝜅uv ∶=
2 𝑝u + 𝑝v

𝑅uv
𝑝u ≔ 1 −

1

2
σv∈N(u)𝑅uv

Spectral computation

Optimization problem

𝑅𝑢𝑣 = 𝐞𝑢 − 𝐞𝑣 𝐋+(𝐞𝑢 − 𝐞𝑣)

or

𝐋+ =

𝑖=2

𝑛
1

𝝀𝑖
𝐟𝑖𝐟𝑖

𝐓



𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

M
LP

ta
nh𝐗

A

𝐙 ∈ ℝ𝑛×𝑂(𝑛) 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛=
cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓

CT-Layer
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

𝐙 = arg min
𝑠.𝑡. 𝐙𝑇𝐙=𝕀

𝑇𝑟[𝐙𝑇𝐋𝐺𝐙]

𝑇𝑟[𝐙𝑇𝐃𝐺𝐙]
𝐙 = 𝑣𝑜𝑙(𝐺)𝚲−1/2𝐅𝑇 𝐿𝐶𝑇 =

𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

Use Effective Resistances 

matrix (commute times) as the 

input adjacency matrix for 

new layers

CT-layer can be added as the first layer 
or as the # desired layer



CT-Layer
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From Spectral CT to CT-Layer

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)

CTE as node feat
(preliminary work in both papers)

CT as difusion (A)
(DiffWire – actual rewiring – previous slide)

CT as edge feat
(Affinity-Aware approach)

Simplified version of the
previous slide

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹



𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

M
LP

ta
nh𝐗

A

𝐙 ∈ ℝ𝑛×𝑂(𝑛) 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛=
cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓

CT-Layer
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py

https://github.com/AdrianArnaiz/DiffWire/blob/main/layers/CT_layer.py
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From Spectral CT to CT-Layer

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹
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From Spectral CT to CT-Layer

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛

New Learned
Adjacency

𝐓𝐂𝐓

Learned
PE
𝐙

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹
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From Spectral CT to CT-Layer

Arnaiz-Rodriguez, A., Begga, A., Escolano, F. & Oliver, N. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. Proceedings of the First 
Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December, 2022

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)
cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛 𝐿𝐶𝑇 =

𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

Graph from COLLAB Test Set



CT-Layer
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Experiments on Graph Classification

Arnaiz-Rodriguez, A., et al. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. In Learning on Graphs Conference (LoG), 2022. 
Li, P., et al. “Distance encoding: Design provably more powerful neural networks for graph representation learning”. In NeurIPS, 2020. 
Velingker, A., et al. "Affinity-Aware Graph Networks." arXiv preprint arXiv:2206.11941, 2022.

EXPRESSIVENESS 
More sparse Graph Readouts → greater ability to detect differences between graphs
DE or PE provides strictly more expressive power than 1-WL test [Li, P. et al. 2020] [Velingker, A. et al. 2022] 

LINEAR

CONV

MINCUT

CONV

READOUT

MLP

X

X

X

A

X, A

X

X

Y

X
LINEAR

CONV

MINCUT

CONV

READOUT

MLP

X

X

A

X

X

Y

CT-Layer
𝐓𝐜𝐭

X, A

Graph pooling



CT-Layer
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Implications in Cheeger constant

Alev, VL., et al. “Graph Clustering using Effective Resistance”. In ITCS, 2018.

ℎ𝐺 ≤
αϵ

𝑹𝒅𝒊𝒂𝒎 · ϵ
vol 𝑆 𝜖−

1
2

𝑅𝑑𝑖𝑎𝑚 ≔ max
𝑢,𝑣

𝑹𝐮𝐯

𝒉𝑮 = min
𝑆⊆𝑉

ℎ𝑆 , ℎ𝑆 =
|{ 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ ҧ𝑆}|

min( vol 𝑆 , vol( ҧ𝑆))

[Alev. et al., 2018] 

CT prioritizes edges in the bottleneck while it sparsifies the communities

# edges in the bottleneck

Volume of the community
Community sparsification 
minimizes this

Giving priority to the edges in 
the bottleneck maintains this

𝑅uv ∝ 𝐶𝑇uv = 𝐓𝑢𝑣
𝐂𝐓

Edges in the bottleneck

Prioritizing edges in the bottleneck 
maintains upper bound (at least)

In the rewired graph 𝐺’: bottleneck is wider → resistances are lower in 𝐺’

Rewiring using CT dist

Community sparsification Preserve bottleneck

Preserve 𝑅𝑑𝑖𝑎𝑚 in 𝐺’

No reduction of 
ℎ𝐺 upper bound



CT-Layer
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Relationship with Curvature

Devriendt, K. and Lambiotte, R. “Discrete curvature on graphs from the effective resistance”. Journal of Physics: Complexity, 2022.
Topping, J., et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022.

𝑅uv = 𝐓𝑢𝑣
𝐂𝐓

M
LP𝐗 𝐙

cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓

𝜅uv ∶=
2 𝑝u + 𝑝v

𝑅uv

𝑝u ≔ 1 −
1

2
σv∈N(u)𝑅uv

Node Curvature

Edge Curvature

Original CT Curvature 
(Calculated from Ruv)

CT-Layer as differentiable curvature

[Devriendt. et al., 2022] 



CT-Layer
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Relationship with Curvature

KDE of CT EmbeddingCT Embedding

↓𝜆2

↑𝜆2

Devriendt, K. and Lambiotte, R. “Discrete curvature on graphs from the effective resistance”. Journal of Physics: Complexity, 2022.
Topping, J., et al. “Understanding over-squashing and bottlenecks on graphs via curvature”. In ICLR, 2022.



▪ CT Distance for diffusion helps in heterophilic tasks▪ CTE as structural feature (PE) reinforces performance 
in homophily tasks
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Node Classification. CT-Diffusions vs CT as Positional Encoding.

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)
cdist(𝐙)

vol(𝐺)
𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛

Arnaiz-Rodriguez, A., et al. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. In Learning on Graphs Conference (LoG), 2022. 
Li, P., et al. “Distance encoding: Design provably more powerful neural networks for graph representation learning”. In NeurIPS, 2020. 
Velingker, A., et al. "Affinity-Aware Graph Networks." arXiv preprint arXiv:2206.11941, 2022.

X 𝐙

X 𝐙

X 𝐙



▪ CT Distance for diffusion helps in heterophilic tasks▪ CTE as structural feature (PE) reinforces performance 
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Node Classification. CT-Diffusions vs CT as Positional Encoding.

M
LP

 
ta

nh𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)
cdist(𝐙)

vol(𝐺)
𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛

Arnaiz-Rodriguez, A., et al. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. In Learning on Graphs Conference (LoG), 2022. 
Li, P., et al. “Distance encoding: Design provably more powerful neural networks for graph representation learning”. In NeurIPS, 2020. 
Velingker, A., et al. "Affinity-Aware Graph Networks." arXiv preprint arXiv:2206.11941, 2022.

X 𝐙

X 𝐙

X 𝐙



GAP-Layer

▪ Goal: Optimize bottleneck width

λ2 ≔ spectral gap or bottleneck size

▪ Search ෩𝐀 as similar as 𝐀 but minimizing bottleneck size
▪ Spectral derivatives

𝐿𝐹𝑖𝑒𝑑𝑙𝑒𝑟 = ෩𝐀 − 𝐀
𝐹
+ α 𝛌𝟐

2

∇෩𝐀λ2 ≔ 𝑇𝑟 ∇ሚ𝐋λ2
𝑇∇෩𝐀ሚ𝐋 = diag 𝐟2𝐟2

𝑇 𝟏𝟏𝑇 − 𝐟2𝐟2
𝑇

▪ 𝐟2 ∈ ℝ𝑛 ≔ Fiedler vector
▪ 𝐟2 : Node membership to each of the 2 clusters
▪ λ2: Eigenvalue of 𝐟2 (Dirichlet energies of 𝐟2)

▪ Main problem: λ2 and 𝐟2 are usually spectrally computed

66/n

Spectral Derivatives

Kang, J. and Tong, H. “N2n: Network derivative mining”. In CIKM, 2019.



GAP-Layer
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Gap-Layer: Approximating the Fiedler vector

𝐿𝑐𝑢𝑡 =
Tr[𝐒𝐓𝐋𝐒]

Tr[𝐒𝐓𝐃𝐒]
+

𝐒𝐓𝐒

𝐒𝐓𝐒 𝐹
−
𝐈𝑁

2 𝐹

𝐿𝑓𝑖𝑒𝑑𝑙𝑒𝑟 = ෩𝐀 − A
𝐹
+ α(λ𝟐)

2

∇෩𝐀𝛌𝟐 = 2 ෩𝐀 − 𝐀 + (diag 𝐟2𝐟2
𝑇 𝟏𝟏𝑇 − 𝐟𝟐𝐟𝟐

𝑻) × 𝛌𝟐

M
LP

  σ

𝐗

A

𝐒 ∈ ℝ𝑛×2 ෩A⊙A 𝐓𝐆𝐀𝐏
𝐟2(𝐒)
λ𝟐 = ℰ 𝐟2

∇෩𝐀𝐿𝐹𝑖𝑒𝑑𝑙𝑒𝑟
෩𝐀 = 𝐀 − 𝜇 × ∇෩𝐀𝛌𝟐

How does GAP-Layer learn 𝐟𝟐?

𝐒 ∈ ℝ𝑛×2
→ cluster membership

𝐟𝟐 𝐒 = ൝
+1/ 𝑛 if u belongs to cluster #1

−1/ 𝑛 if u belongs to cluster #2

How does GAP-Layer learn 𝛌𝟐?

𝛌𝟐 = 𝓔𝑮 𝐟𝟐 = 𝐟𝟐
T𝐋𝐺𝐟𝟐

Dirichlet energies of the approximated 𝐟𝟐

Arnaiz-Rodriguez, A., et al. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. In Learning on Graphs Conference (LoG), 2022. 
Hoang, N.T., et al. “Revisiting graph neural networks: Graph filtering perspective”. In ICPR, 2020.

[Hoang. et al., 2020] 



GAP-Layer
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Experiments

Arnaiz-Rodriguez, A., et al. “DiffWire: Inductive Graph Rewiring via the Lovász Bound”. In Learning on Graphs Conference (LoG), 2022. 

Original CT-Layer GAP-Layer



Future work

69/n

Rewiring
▪ Dynamic Rewiring wrt structure, homophily-heterophily and utility

▪ Reduce or enforce over-squahing when needed (merge only util information)

▪ Rewiring with Interpretability

DiffWire
▪ Use of learned CT for different objectives

▪ Code to sparse → efficient computation

▪ Code to PyG→ Easy use (even more)



Graph Fairness
Algorithmic Fairness 
with Graph Rewiring

70Illustration by Justin Metz in Chouldechova, A. and Roth, A., 2020. A snapshot of the 
frontiers of fairness in machine learning. Communications of the ACM, 63(5), pp.82-89.



71

Motivation and Challenges

Introduction to Spectral Theory

Transductive Rewiring

Inductive Rewiring

Graph Fairness

Panel Discussion



Algorithmic Fairness
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ML for Critical Decision Making

Buolamwini, J., et al. “Gender shades: Intersectional accuracy disparities in commercial gender classification”. In FAccT, 2021

✓ Privacy
✓ Transparency
✓ Accountability

✓ Reliability
✓ Autonomy
✓ Fairness

Social Biased decisions leads to

World Data

ModelIndividuals

Learning

Measurement

Action

Feedback



Algorithmic Fairness

Ensure that the outputs of a model DO NOT depend on sensitive attributes 
F(𝐗) = R, S ∈ 𝐗→ R ⊥ S

73/n

Independence on the Protected Attributes

Barocas, S., et al. “Fairness in machine learning”. NeurIPS tutorial, 2017
Dwork, C., et al. “Fairness through awareness”. Proceedings of the 3rd innovations in theoretical computer science conference, 2012.

A

X

Y

Group Fairness
Groups (defined by sensitive attributes) are treated equally

Individual Fairness
Treat similar individuals in a similar way

Our Dataset: 𝑫 = 𝒙𝒊, 𝒚𝒊 𝒊
𝑵

Distance between𝒙𝒊 pairs: 𝒌: 𝑽 𝒙 𝑽 → 𝑹.

Mapping from 𝒙𝒊 to outcomes probability distribution𝑴: 𝑽 → 𝜶𝑺

Distance between distributions of outputs 𝑫
𝑫(𝑴(𝒙),𝑴(𝒚)) =< 𝒌(𝒙, 𝒚)

-

Independence Separation Sufficiency

R⊥S R⊥S | Y S⊥Y | R

𝐏 𝐑 𝐒 𝐏 𝐘 𝐑, 𝐒𝐏(𝐑|𝐘, 𝐒)

Equalized odds

P( R=1 | Y=i, S=a ) = 
P( R=1 | Y=i, S=b ),
i ∈ 0, 1

TPR – FPR
Equal error rates

Predictive Parity

P( Y=1 | R=1, S=a ) =
P( Y=1 | R=1 , S=b )

PPV – NPV
Equal success rate

Demographic parity 

P(R=1|S=a) = P(R=1|S=b)

Positive Predicted Ratio: 
Equal acceptance rate



Topology of the graph (A) can be biased → correlated with sensitive attributes

74/n
McPherson, M., et al. “Birds of a feather: Homophily in social networks”. Annual review of sociology 27, 2001
Dong, Y., et al. “Edits: Modeling and mitigating data bias for graph neural networks”. In the Web Conference, 2022.
Masrour, F., et al. “Bursting the filter bubble: Fairness-aware network link prediction”. In AAAI, 2020.

Why Graph Fairness?
The Graph Structure: a New Biased Element

Friendship among students in a Dutch School 
[Masrour, 2020]

▪ Over-representing homophilic edges 
(social stratification, fraudulent links, social homophily [McPherson, 2001])

▪ Missing heterophilic edges that 
would have been present in more fair settings

[Dong, 2022]



Protected attributes
Labels

Fair Topology

Biased Topology

* Also applies to community detection
and Link prediction

Recommendations

Why Graph Fairness?
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Consequences on the Real world

Hampson, M. “Smart Algorithm Bursts Social Networks' ‘Filter Bubbles’. 2011. [Link]
Wang, S., et al. “Graph learning based recommender systems”. In IJCAI, 2021

Decisions on the nodes Influence Maximization

X

X

$

$

X

?

$

$

X

X

X

$

$

X

?

$

$

X

X, $ Biased recommendations
(Products, jobs, content…)

Echo Chambers and Filter bubbles

https://spectrum.ieee.org/finally-a-means-for-bursting-social-media-bubbles


Graph Fairness
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Causes

Graph 
Topology

A

Sensitive 
Attributes

S

Node
Labels

Y

Homophily
Heterophily

Algorithmic 
Fairness

Biased 
Topology

Graph Fairness
S-A-Y



Graph Fairness

Unbiased Attributes Biased Attributes [𝐘-𝐒]

Unbiased 
Structure

Biased 
Structure

[𝐀-𝐒]
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Causes

X

$

X

$

X

$

$

X

X X

$

$

$

X

X

X

X

$

X

$

X

$

X

$

X

X

$ X

$

$

$

X

X

$

X

X

Label correlates with the protected attribute
𝐘 − 𝐒

Graph generation process is Biased
People built relationships in correlation only with A
Model will have bad accuracy and biased decision

Assortativity in protected attribute

Society is Biased
People built relationships in correlation with Y and/or A

Model will have good accuracy but biased decision
Assortativity in protected attribute (S-A) and label homophily (A-Y)

Structure correlates with the protected attribute 
𝐀 − 𝐒

Both correlate with the protected attribute
𝐒 − 𝐀 − 𝐘

Individuals are biased, their relationships are not

𝐒: Sensitive attribute     𝐀: Adjacency, i.e. Matrix Structure     𝐘: Node Label



Tasks

▪ Topology analysis

▪ Representation Learning

▪ Classification/Regression

▪ Link prediction

▪ Community detection

▪ Application specific
▪ Recommender 

systems
▪ Influence maximization
▪ Ranking

Causes

▪ A-S correlation

▪ Y-S correlation

▪ Y-A correlation 
(homophily)

Dimensions of taxonomy
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Perspectives to analyze graph fairness

Fairness definitions

▪ Node-level decision
▪ Group

▪ …

▪ Individual
▪ …

▪ Structure segregation
▪ Group

▪ …

▪ Individual
▪ …

Techniques

▪ Constrained optimization

▪ Adversarial/orthogonal

▪ Rebalancing

▪ Graph Rewiring



Original 
Structure

Graph Fairness Definitions
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Definitions and Metrics

Graph Fairness

Group Individual

Degree

CounterfactualEmbedding

ClusteringInfluence 
maximization

Ranking or 
distancesEmbedding

Node clf Link pred
Dyadic

Node Fairness Structural Fairness

Group Individual

Original 
Structure

Link pred

Focused on
node-level decisions

Focused on
structure segregation

ClusteringNode clf

Node embedding ⫫ S
Node prediction ⫫ S

Similar* nodes should lead 
to similar predictions.

* Similarity can be n be given 
based on X, A…

Structure ⫫ S
No Assortativity in S

No communities based on S
Link prediction ⫫ S
𝑃 𝑢, 𝑣 𝐴𝑢 = 𝐴𝑣) =

𝑃((𝑢, 𝑣)|𝐴𝑢 ≠ 𝐴𝑣)

Similar nodes should be 
connected

𝑃 𝑢, 𝑣 ∈ 𝐸 = 𝑑(𝑥𝑢, 𝑥𝑣)

or they should have highly 
overlapped neighboring 

node sets



Graph Fairness Definitions
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Definitions and metrics from a Pipeline Point of View

Z

M
od

el
EmbeddingsTopology

Clustering

Influence Max

Rec Sys

Ranking

Classification
▪ Group
▪ DI/EOd/Eop
▪ Counterfactual 

(% change f(X) when change A)
▪ Individual
▪ Consistency
▪ Degree

▪ Group
▪ Assortativity
▪ Attribute Homophily

▪ Group
▪ Balance (SC)
▪ ModRed

▪ Individual
▪ SC

▪ Group
▪ Distributional Bias
▪ Representation Bias (AUC predicting A) 

▪ Individual
▪ Pair Distance Tr 𝐘𝐓𝐋𝐬𝐘
▪ Ranking similarity

Link Prediction
▪ Group
▪ Dyadic Fairness
▪ DI / EOd / EOp

▪ Individual
▪ 𝑇𝑟(𝐴𝑇𝜙𝑇𝐿𝐾𝜙𝐴)



Graph Fairness Definitions
Definitions and metrics from a Pipeline Point of View

Topology Clustering
Group
▪ Assortativity [Newman, 2003]

▪ Modularity: modred [Masrour, 2020]

𝑄 =
1

2 𝐸


𝑖𝑗

𝐴𝑖𝑗 −
𝑑𝑖𝑑𝑗

2 𝐸
𝑆𝑢 ⊗𝑆𝑣

modred =
Qref − Qpred

Qref
▪ Attribute Homophily

ℎ𝒆𝒅𝒈𝒆𝒔 =
|{ 𝑢, 𝑣 ∈ 𝐸: 𝑆𝑢 = 𝑆𝑣}|

|𝐸|

ℎ𝒏𝒐𝒅𝒆𝒔 =
1

𝑉


𝑣∈𝑉

|{𝑢 ∈ 𝑁 𝑣 : 𝑆𝑢 = 𝑆𝑣}|

|𝑁 𝑣 |

▪ Information Unfairness Score [Jalali 2020]

𝑀 =𝜃𝐴𝑘 ; Max({𝑑: 𝑑 = 𝐷 𝑀𝑆𝑢=𝑖,𝑆𝑣=𝑗
, 𝑀𝑆𝑘=𝑆𝑣=𝑙

})∀𝑖 ∈ {0,1}

Individual
▪ Dirichlet energies wrt node features X

ℰ 𝒚 = 𝑇𝑟[𝐗𝐓𝐋𝐗]

Group
▪ Same proportion of each group in each cluster as in the population as a whole

balance = min
Vs ∩ Ck
Vs
′ ∩ Ck

▪ For each node, each cluster must contain an adequate number of members similar* 
to the individual. *similar defined by some graph 𝑅 built using sensitive attributes.

𝑗: 𝑅𝑖𝑗 = 1 ∧ 𝑣𝑗 ∈ Ck

𝐶𝑘
=

𝑗: 𝑅𝑖𝑗 = 1

𝑉
, ∀𝑘 ∈ 𝐾

Individual

1

𝐶(𝑢) − 1


𝑣∈𝐶(𝑢)

𝑑(𝑢, 𝑣) ≤
1

𝐶𝑘


𝑣∈𝐶𝑘

𝑑 𝑥, 𝑦 , ∀𝑘 ∈ 𝐾

Link Prediction
Group – Dyadic Fairness
▪ Statistical Parity or Disparate Impact 

[Laclau, 2020; Rahman, 2019; Buyl, 2020; Li, 2021; Spinelli, 2021] 

𝑃((𝑢, 𝑣)|𝑆𝑢 = 𝑆𝑣) = 𝑃 𝑢, 𝑣 𝑆𝑢 ≠ 𝑆𝑣
𝑃 𝑢, 𝑣 𝑆𝑢 = 𝑆𝑣)

𝑃 𝑢, 𝑣 𝑆𝑢 ≠ 𝑆𝑣

▪ Equal opportunity [Buyl, 2020 ; Li, 2021] 

𝑃 𝑢, 𝑣 𝑦𝑢𝑣 = 1, 𝑆𝑢 = 𝑆𝑣) =

𝑃((𝑢, 𝑣)|𝑦𝑢𝑣 = 1, 𝑆𝑢 ≠ 𝑆𝑣)

▪ Equalized odds [Li, 2021] 

𝑃 𝑢, 𝑣 𝑦𝑢𝑣 = 𝑖, 𝑆𝑢 = 𝑆𝑣) =

𝑃 𝑢, 𝑣 𝑦𝑢𝑣 = 𝑖, 𝑆𝑢 ≠ 𝑆𝑣 ∀𝑖 ∈ {0,1}

* More group metrics like ARP [Rahman, 2019] or
DI or EO based on group and subgroup dyadic-specific [Spinelli, 2021]
(above metrics are mixed dyadic)

Individual
ℰ 𝒚 = 𝑇𝑟[𝐗𝐓𝐋′𝐗]

𝑃 𝑢, 𝑣 ∈ 𝐸 = 𝑑(𝑥𝑢, 𝑥𝑣)

Masrour, F., et al. “Bursting the filter bubble: Fairness-aware network link prediction”. In AAAI, 2020.
Buyl M., et al.. “Debayes: a bayesian method for debiasing network embeddings”. In ICML, 2020.
Jalali Z. S., et al. “On the information unfairness of social networks”. In SDM, 2020
Newman, M. “Assortative mixing in networks”. Phys. Rev. Lett., 89, 2002.

Laclau, C., et al. “All of the Fairness for Edge Prediction with Optimal Transport”. In ICAIS, 2020.
Rahman, T. et al. “FairWalk: Towards Fair Graph Embedding”. In IJCAI, 2019.
Li, P., et al. “On dyadic fairness: Exploring and mitigating bias in graph connections”. In ICLR, 2021.
Spinelli, I., et al. “FairDrop: Biased edge dropout for enhancing fairness in GRL”. In TAI 2021
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Graph Fairness Definitions
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Definitions and metrics from a Pipeline Point of View

Z

M
od

el
EmbeddingsTopology

Clustering

Influence Max
Rec Sys
Ranking

Classification
▪ Group
▪ DI/EOd/Eop
▪ Counterfactual 

(% change f(X) when change A)
▪ Individual
▪ Consistency
▪ Degree

▪ Group
▪ Assortativity
▪ Attribute Homophily

▪ Group
▪ Balance (SC)
▪ ModRes

▪ Individual
▪ SC

▪ Group
▪ Distributional Bias
▪ Representation Bias (AUC predicting A) 

▪ Individual
▪ Pair Distance Tr 𝐘𝐓𝐋𝐬𝐘
▪ Ranking similarity

Link Prediction
▪ Group
▪ Dyadic Fairness
▪ DI / EOd / EOp

▪ Individual
▪ 𝑇𝑟(𝐴𝑇𝜙𝑇𝐿𝐾𝜙𝐴)



Graph Fairness Definitions
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Definitions and metrics from a Pipeline Point of View

Z

M
od

el
EmbeddingsTopology

Clustering

Influence Max
Rec Sys
Ranking

Classification

Link Prediction

Graph Rewiring
▪ Benefits all tasks in the pipeline
▪ Provides a strong interpretability
▪ Lot of theory behind
▪ Aligned with other problems in GNNs

▪ Homophily/Heterophily
▪ Expressiveness



84/nJalali Z. S., et al. “On the information unfairness of social networks”. In SDM, 2020. [Video]

𝐀 =𝑝𝐌𝑘

Information Unfairness
Maximum difference between distribution of intra and inter edge weights joint attribute accessibility distribution 

𝐃𝑓𝑔 = {𝐀𝑢𝑣: 𝑆𝑢 = 𝑓, 𝑆𝑣 = 𝑔}

Assortativity = 0.66
*same intra-inter edges

IU: 0.32IU: 0.19

Rewiring for Topology Debiasing
On the Information Unfairness of Social Networks

https://www.youtube.com/watch?v=TtyWhNYqCO8


Rewiring for Topology Debiasing
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On the Information Unfairness of Social Networks

Jalali Z. S., et al. “On the information unfairness of social networks”. In SDM, 2020. [Video]

MaxFair
Find 𝑏 edges such that the IU of 𝐺’ = (𝑉, 𝐸 ∪ 𝐵) is minimized

1. Calculate Node-Attribute centrality: Quantify how well a node spreads information into a group

▪ 𝑣𝑒𝑐s ∈ ℝ1×𝑛 = σ𝑘 𝑝
𝑘 × 𝑣𝑒𝑐s,𝑘 : each node’s centrality with respect to sensitive group. One for each s ∈ 𝑆.

▪ vecs,0 : vector of node membership to sensitive group. i.e. v𝑒𝑐s,0 𝑢 = 1 if 𝑆𝑢 = f else 0

▪ vecs,𝑘(𝑢) = 𝑠𝑢𝑚 𝑣𝑒𝑐𝑠,𝑘−1 𝑣
𝑗∈𝑁(𝑢)

: message passing using vecs,0 as initial feature

2. Score unconnected pair of nodes using 𝑣𝑒𝑐s
▪ 𝐀 = σ𝑝𝐌𝑘

→ 𝐃𝑓𝑔 = 𝐀𝑢𝑣: 𝑆𝑢 = 𝑓, 𝑆𝑣 = 𝑔 , ∀ 𝑓, 𝑔 ∈ 𝑆 , i.e. 
▪ 𝑠𝑓𝑔 = mean(A) − mean(𝐃𝑓𝑔). How each distribution deviate from the mean of all edges.
▪ score 𝑢, 𝑣 = σ𝑓,𝑔∈𝑆 𝑠𝑓𝑔 ∗ (𝑣𝑒𝑐𝑓(𝑢) ∗ 𝑣𝑒𝑐𝑔(𝑣) + 𝑣𝑒𝑐𝑔(𝑢) ∗ 𝑣𝑒𝑐𝑓(𝑣))

3. Select the highest scoring edge

Weighted 
MultiHead Message 
passing using 
one hot encoded 
sensitive attribute
as X

How a given edge 
would relief 
over-squashing 
between 2 different 
communities 
defined by sensitive 
attributes?

https://www.youtube.com/watch?v=TtyWhNYqCO8


Evaluate Structural Fairness by change in modularity after link prediction

Greedy-FLIP
Greedy rewiring at post-processing

86/nMasrour, F., et al. “Bursting the filter bubble: Fairness-aware network link prediction”. In AAAI, 2020

𝑄 =
1

2 𝐸


𝑖𝑗

𝐴𝑖𝑗 −
𝑑𝑖𝑑𝑗

2 𝐸
𝑆𝑢 ⊗𝑆𝑣 modred =

Q − Q′

Q

Rewiring for Fair Link Prediction
Bursting the Filter Bubble: Fairness-aware network link prediction

Link Predictor

𝑃(𝑧𝑢, 𝑧𝑣) zu zv= relu(MLP( ))= Ƹ𝑒𝑢𝑣

ℒ𝑃 = cross_entropy(𝑒𝑢𝑣, Ƹ𝑒𝑢𝑣)

ZD
ee

p 
W

al
k

Ƹ𝑒𝑢𝑣

How flipping an edge prediction change the modularity?
Flip edge with the lowest score and repeat



Evaluate Structural Fairness by change in modularity after link prediction

FLIP
Adversarial Rewiring

87/nMasrour, F., et al. “Bursting the filter bubble: Fairness-aware network link prediction”. In AAAI, 2020

Adversarial Learning for Fair Link Prediction
Bursting the Filter Bubble: Fairness-aware network link prediction

Z

D
ee

p 
W

al
k

Discriminator
Given a pair of nodes, are the pair 

of nodes from the same class?

Link Predictor

ℒ𝑟𝑒𝑝

𝑃(𝑧𝑢, 𝑧𝑣) zu zv= relu(MLP( ))= Ƹ𝑒𝑢𝑣

ℒ𝑃 = cross_entropy(𝑒𝑢𝑣 , Ƹ𝑒𝑢𝑣)

ℒ𝐷 = cross_entropy(𝑔𝑢𝑣 , 𝑔𝑢𝑣)

𝐷(𝑧𝑢, 𝑧𝑣) zu zv= relu(MLP( ))= ො𝑔𝑢𝑣

ℒ = 𝛼ℒ𝑟𝑒𝑝 − (1 − 𝛼)ℒ𝐷+𝛽ℒ𝑃

𝑄 =
1

2 𝐸


𝑖𝑗

𝐴𝑖𝑗 −
𝑑𝑖𝑑𝑗

2 𝐸
𝑆𝑢 ⊗𝑆𝑣 modred =

Q − Q′

Q



Until convergence of 𝜽 or ෩𝐀
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Li, P., et al. “On dyadic fairness: Exploring and mitigating bias in graph connections”. In ICLR, 2021

Dyadic Fairness: 𝑃((𝑢, 𝑣)|𝑆𝑢 = 𝑆𝑣) = 𝑃 𝑢, 𝑣 𝑆𝑢 ≠ 𝑆𝑣 → predict equal number of

FairAdj
Rewire the graph topology to get fair embeddings to perform fair link prediction using projected gradient descent →maintain A nature

▪ They prove that their rewiring reduces an upper bound of a constant that, if low, is a sufficient condition for Dyadic Fairness
▪ It reduces the disparity of representation between nodes of different groups after message passing

Rewiring for Fair Link Prediction
On dyadic fairness: Exploring and mitigating bias in graph connections

* Also, same TPR, 
TNR, FPR and FNR

min
෩𝐀

ℒfair ≔ E𝑢,𝑣~𝑈𝑥𝑈 ℎ 𝑢, 𝑣 𝑆𝑢 = 𝑆𝑣 − E𝑢,𝑣~𝑈𝑥𝑈 ℎ 𝑢, 𝑣 𝑆𝑢 ≠ 𝑆𝑣
2

s.t ෩𝐀
𝑢𝑣

= 0 if 𝐀 𝑢𝑣 = 0 and ෩𝐀𝟏 = 𝟏

Same probability of inter
and intra links without 
adding edges and being a 
RW matrix

෩𝐀 = ෩𝐀 − (𝜂𝛁෩𝐀ℒfair) Modify ෩𝐀 to minimize ℒfair

Project ෩𝐀 − (𝜂𝛁෩𝐀ℒfair) to the feasible space
෩𝐀 − 𝜂𝛁෩𝐀ℒfair 𝟏 = 𝟏

Modify ෩𝐀 to be 
row stochastic  

max
𝛉

ℒ𝑉𝐺𝐴𝐸 ≔ E log𝑝(𝐀|𝐙) − 𝐾[GNN(𝐙|𝐗, ෩𝐀)||𝑁(0,1)]
Train 𝛉 n epochs for utility

Train ෩𝐀 m epochs for fairness

Link 
Predictor
ℎ = 𝑍𝑍𝑇

ZG
N

N

෩𝐀



Rewiring for Fair Representation Learning

Fairness: AUC predicting S *they also perform link prediction evaluated with dyadic fairness

FairDrop
Fair edge dropout

▪ Dropout homophilic edges with prob ½+ 𝛅

▪ Dropout heterophilic edges with prob ½− 𝛅

89/n

FairDrop: Biased edge dropout for enhancing fairness in Graph Rrepresentation Learning

Spinelli, I., et al. “FairDrop: Biased edge dropout for enhancing fairness in GRL”. In TAI 2021

𝛅 = 0 𝛅 = 0.1 𝛅 = 0.35 𝛅 = 0.5



That’s not all Folks!

RW for topology debiasing 

▪ MaxFair
Jalali Z. S., et al. “On the information unfairness of social networks”. In SDM, 
2020

RW first for link prediction 

▪ Greedy-FLIP
Masrour, F., et al. “Bursting the filter bubble: Fairness-aware network link 
prediction”. In AAAI, 2020.

▪ FairAdj
Li, P., et al. “On dyadic fairness: Exploring and mitigating bias in graph 
connections”. In ICLR, 2021.

▪ FairDrop
Spinelli, I., et al. “FairDrop: Biased edge dropout for enhancing fairness in GRL”. 
In TAI 2021

▪ OT: Individual Fairness
Laclau, C., et al. “All of the Fairness for Edge Prediction with Optimal Transport”. 
In ICAIS, 2020.

RW for fair representation learning

▪ InForm: Individual Fairness
Kang, J. et al. “Inform: Individual fairness on graph mining”. In SIGKDD 2020.

▪ FairDrop – [Spinelli, I., 2021]

▪ FairAdj – [Li, P., 2021]

90/n

More Graph Rewiring Methods for Graph Fairness

RW for node classification

▪ OT  - [Laclau, C.,  2020]

▪ EDITS
Dong, Y., et al. “EDITS: Modeling and mitigating data bias for graph neural 
networks”. In WWW, 2022.

▪ FairEdit
Loveland, Donald, et al. "FairEdit: Preserving Fairness in Graph Neural Networks 
through Greedy Graph Editing." preprint, 2022.

RW for specific applications

▪ Recommender systems
▪ Fabbri, F., et al. “ Rewiring What-to-Watch-Next Recommendations to Reduce 

Radicalization Pathways”. In WWW, 2022.



What can we do now?

▪ Normalization of benchmarks, evaluation metrics and pipelines
▪ Formalization of Graph Fairness as happens in Algorithmic Fairness
▪ Beyond Dyadic fairness
▪ Accuracy-fairness tradeoff in Graph Fairness?
▪ More efficient and Interpretable Rewiring Methods
▪ Causality Aware GNNs for fairness
▪ Ethical challenges:

o Different values and philosophical fairness definitions
o Human-in-the-loop
o Robustness, XAI, privacy…
o Go beyond known, measurable, discrete and static sensitive attributes*
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